首页> 外文OA文献 >Generic first-order nematic-isotropic phase transition of orientational phases with polyhedral symmetries
【2h】

Generic first-order nematic-isotropic phase transition of orientational phases with polyhedral symmetries

机译:一般的一阶向列 - 各向同性相变的定向   具有多面体对称性的相

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Polyhedral nematics are exotic orientational phases that possess a complexinternal symmetry and may be realized in colloidal and molecular liquid-crystalsystems. Although their classification has been known for a long time, theirphase transitions to isotropic liquids remain largely unexplored except for afew symmetries. In this work, we utilize a recently introduced non-Abeliangauge theory to explore the nematic-isotropic phase transition for allthree-dimensional polyhedral nematics. The gauge theory can readily be appliedto nematic phases with an arbitrary point-group symmetry, including those wheretraditional Landau methods and the associated lattice models may become tooinvolved to implement owing to a tensor order parameter of too high rank or(the absence of) mirror symmetries. From our Monte Carlo simulations, we findthat the nematic-isotropic transition is generically first-order for allpolyhedral symmetries. Moreover, we show that our results are consistent with arenormalization scenario, as well as with other lattice models for symmetriesalready studied in the literature. We argue that extreme fine tuning isrequired to promote those transitions to second order ones.
机译:多面向列是具有复杂的内部对称性的外来取向相,可以在胶体和分子液晶系统中实现。尽管很早就知道了它们的分类,但除少数对称性外,它们向各向同性液体的相变仍未开发。在这项工作中,我们利用一种最新引入的非阿贝良高理论来探索全维多面体向列相的向列各向同性相变。规范理论可以很容易地应用于具有任意点群对称性的向列相,包括那些传统的Landau方法和相关的晶格模型可能由于太高的张量阶数参数或(不存在)镜面对称性而变得过于复杂而无法实施的那些相。从我们的蒙特卡洛模拟中,我们发现向列各向同性跃迁通常是全多面体对称的一阶。此外,我们证明了我们的结果与正则化方案以及文献中已研究的其他对称性格模型均一致。我们认为需要极微调来促进那些过渡到二阶过渡。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号